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Wavelet-based fractal analysis of airborne pollen
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The most abundant biological particles in the atmosphere are pollen grains and spores. Self-protection of a
pollen allergy is possible through information about future pollen contents in the air. In spite of the importance
of airborne pollen concentration forecasting, it has not been possible to predict the pollen concentrations with
great accuracy, and about 25% of daily pollen forecasts result in failures. Previous analyses of the dynamic
characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional
chaotic map. We apply a wavelet transform to study the multifractal characteristics of an airborne pollen time
series. The information and the correlation dimensions correspond to a chaotic system showing a loss of
information with time evolution.@S1063-651X~99!00606-6#

PACS number~s!: 05.45.2a, 87.10.1e
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I. INTRODUCTION

A pollen allergy is a common disease causing hay feve
5–10 % of the population. Although not a life threateni
disease, the symptoms can be very troublesome; furtherm
the costs to the social sector due to pollen related dise
are high. Self-protection of hay fever patients is possi
through information about future pollen contents in the
@1#.

Models to forecast pollen concentration in the air are pr
cipally based on pollen and atmospheric weather inte
tions. Several statistical techniques@2–4# have been used to
predict future atmospheric pollen concentrations fro
weather conditions of the day and recent previous days
spite of these attempts, it has not been possible to predic
pollen concentrations with great accuracy, and about 25%
the daily pollen forecasts have resulted in failures@4#. A
reason for these failures could be that the methods use
airborne pollen forecasting are based on standard linear
tistical techniques which are not suitable when the phen
enon to be forecasted is esentially nonlinear.

A previous analysis of the dynamic characteristics o
time series of atmospheric pollen was developed in Ref.@5#,
through the study of the correlation dimension@6,7#. The
dimension found was of a low and noninteger value@5#,
which indicates that the system may be described by a n
linear function of just a few variables relating the near
pollen concentrations of the time series. The fact that
correlation dimension found was fractal predicts that t
function, also called a map in nonlinear dynamics, can d
play chaotic behavior under certain circumstances. The e
tence of a low dimensional map suggests possibilities
short-term prediction@8# through the use of some nonline
model. Artificial neural networks have been widely used
predict future values of chaotic time series identifying t
nonlinear model by extracting knowledge from the past@9#.
Very good pollen concentration forecasts were obtained
ing neural networks@10# and, in a previous work, the hy
pothesis that random fluctuations appearing in the po
time series are produced by Gaussian noise was reje
@11#.
PRE 591063-651X/99/59~6!/6569~5!/$15.00
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To continue with the characterization of airborne poll
concentrations, the next step would be to characterize th
as a multifractal. A very efficient method to obtain thef (a)
singularity spectrum of a pollen time series relies on the
of a mathematical tool introduced in the early 1980’s in s
nal analysis; thewavelet transform. The wavelet transform
has been proved very efficient to detect singularities and
prove that fractals are indeed singular functions. Mu
Bacry, and Arneodo@12,13# developed thewavelet transform
modulus maxima~WTMM ! method as a technique to stud
fractal objects. In this method the wavelet is used as an
cillating variant of the ‘‘square’’ function of a box. The
WTMM method was succesfully applied to study fract
properties of diverse systems such as DNA nucleotide
quences@14,15#, Modane turbulent velocity signal@12,16#,
and a cool flame experiment@17#. We apply the WTMM
method to obtain the generalized fractal dimensionsDq as-
sociated with the pollen time series.

II. EXPERIMENTAL SETUP

The material used in this work was from our chaos stu
of pollen series@5#. Data of airborne pollen concentratio
were obtained with an automatic and volumetric Burka
pollen and spore trap, situated at the roof of the Facultad
Ciencias Exactas y Naturales of our University, 12 m abo
ground level. The area surrounding the sample is typica
Mar del Plata. The great distance from the sampling site
the emission sources makes the particular emission spe
unimportant.

Ten liters of air per minute were sucked through a
32-mm2 orifice, always orientated against the wind flow
The sucking rate is checked weekly. Behind the slit, a dr
rotates at a speed of 2 mm per hour. The particles are
lected on a cellophane tape~Melinex!, 19 mm wide, just
below the orifice. The sticky collecting surface comprises
nine parts vaseline, and one part paraffin in toluene. T
exposed tape is removed from the drum, cut into pieces o
mm, corresponding to 24-h intervals, then embedded int
solution of polivinylalcohol~Gelvatol!, water, and glycerol,
and covered with a cover glass. Slides were studied as
6569 ©1999 The American Physical Society
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transects per day. The pollen was counted at a magnifica
of 3400 for the first year cycle~August 1987-1988! and at
3200 for the second~August 1988-1989!, and correspond-
ing to 13.5 and 27 min of sampling every 2 h, respective
The method of counting pollen follows that of Ka¨pylä and
Penttinen@18#. Hourly counts were stored in a database fi
for further analysis. Statistics of hourly counts may be se
in Tables 1 and 2 of Ref.@5#. The concentration values co
respond to total pollen grains. The main species found w
Cupressus, Gramineae, Eucalyptus, Pinace, Chenopodiin
Plantago, Cyperaceae, Betula, Cruciferae, compositae Tu
florae, Ambrosia, Ulmus, Umbelliferae, Platanus, and Fra
nus.

III. MULTIFRACTAL FORMALISM

The aim of this formalism is to determinate thef (a) sin-
gularity spectrum of a measurem . It associates the Hauss
dorff dimension of each point with the singularity expone
a, which gives us an idea of the strength of the singular

Na~e!;e2 f (a), ~1!

whereNe is the number of boxes needed to cover the m
sure, ande is the size of each box@19#.

A partition functionZ can be defined from this spectru
~it is the same model as the thermodynamic one!,

Z~q,e!5 (
i 51

N(e)

m i
q~e!;et(q) for e→0, ~2!

wheret(q) is a spectrum which arouses by Legendre tra
forming the f (a) singularity spectrum.

The spectrum ofgeneralized fractal dimensions Dq is ob-
tained from the spectrumt(q)

Dq5
t~q!

~q21!
. ~3!

FIG. 1. Two years of an airborne pollen concentration time
ries. The time step is 2 h. The units of pollen concentration
pollen grains.
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The capacity or box dimension of the support of the dis
bution is given by D05 f „a(0)…52t(0). D15 f „a(1)…
5a(1) corresponds to the scaling behavior of the inform
tion, and is called theinformation dimension. For q>2, Dq
and theq-point correlation integralsare related. As we will
show in Sec. IV, the wavelet transform is specially suited
analyze a time series as a multifractal.

IV. WAVELET TRANSFORM

The wavelet transform~WT! @20,21# of a signals(t) con-
sists of decomposing it into frequency and time coefficien
asociated to the wavelets. The analyzing waveletc, by
means of translations and dilations, generates the so-ca
family of wavelets.

The wavelet transform turns the signals(t) into a function
Tc@s#(a,b):

Tc@s#~a,b!5
1

aE c* S t2b

a D s~ t !dt, ~4!

wherec* is the complex conjugate ofc, a the frequency
dilation factor, andb the time translation parameter.

The wavelet to apply must be chosen with the conditio

E c~ t !dt50, ~5!

and to be orthogonal to lower-order polynomials,

E tmc~ t !dt50, 0<m<n, ~6!

where m is the order of the polynomial. In other word
lower- order polynomial behavior is eliminated, and we c
detect and characterize singularities even if they are mas
by a smooth behavior.

-
e

FIG. 2. Distribution function associated with a pollen conce
tration time series. The WTMM method was applied to this fun
tion. The units of the distribution function are pollen grains tim
hours.
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FIG. 3. Wavelet transform data of pollen time series distribution:~a! scalea51, ~b! scalea5
1
8 , and~c! scalea5

1
64. The units are the

same as the distribution function, pollen grains times hours.
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The WT provides a useful tool in the detection of se
similarity or self-affinity in temporal series. For a valueb in
the domain of the signal, the modulus of the transform
maximized when the frequencya is of the same order of the
characteristic frequency of the signals(t) in the neighbor-
hood ofb; this last one will have a local singularity expone
a(b)P]n,n11@ .

This means that, aroundb,

us~ t !2Pn~ t !u;ut2bua(b), ~7!

wherePn(t) is ann-order polynomial, and

Tc~a,b!;aa(b), ~8!

provided the firstn11 moments are zero. If we havec (N)

5d(N)(ex2/2)/dxN, the firstN moments are vanishing.
The wavelet modulus functionuTc@s#(a,t)u will have a

local maximum around the points where the signal is sin
lar. These local maxima points make a geometric pl
called modulus maxima lineL.
s

-
e

uTc@s#„a,bl~a!…u;aa
„bl~a!… for a→0, ~9!

wherebl(a) is the position at the scalea of the maximum
belonging to the the lineL.

The wavelet transform modulus maxima method cons
of an analysis of the scaling behavior of some partition fu
tions Z(q,a) that can be defined as

Z~q,a!5( uTc@s#„a,bl~a!…uq, ~10!

and will scale asat(q) @12,13#. This partition function works
like the previously defined partition function for singula
measures. Forq.0 the most pronounced modulus maxim
will prevail, and, on the other hand, forq,0 the lower ones
will survive. The most pronounced modulus take place wh
very deep singularities are detected, while the others co
spond to smoother singularities. We can obtaint(q) @Eq.
~2!# and f (a) andDq spectra, as explained previously. Th
shape off (a) is a hump that has a maximum value. Th
generalized fractal dimensionsDq are meaningful for mea-
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sures only. They do not have any meaning for general fu
tions. The pollen time series is a singular measure.

V. APPLICATION OF WTMM METHOD TO
THE POLLEN TIME SERIES

The airborne pollen concentration time series may be s
in Fig. 1. The way to deal with singular measuresm as the
pollen time series is to work with its corresponding distrib
tion functions@i.e., f (x)5m(@0,x#)#, because their singula
behavior is given by the singularities of their associated s
gular measures@12#. The distribution function associate
with the pollen time series is shown in Fig. 2.

The third derivative of the Gaussian function was chos
as the analyzing wavelet,

c (3)~ t !5
d3

dt3
~et2/2!, ~11!

Twelve wavelet transform data files were obtained by app
ing the wavelet transform withc (3), ranging the scaling fac
tor a from amin51/256 toamax58 in steps of 2n. To give an
idea of the effect of the change of scale on the wavelet tra
form of the pollen time series, three of them are shown
Fig. 3.

We computed the partition functionZ(q,a) for 230<q
<30 and 1/256<a<8, obtainingt(q), as shown in Fig. 4.
t(q) is a nonlinear convex increasing function witht(0)5
20.9760.15 and two asymptotic slopes which areamin
50.4060.12 forq.0 andamax51.3960.33 forq,0.

This lays the correspondingf (a) singularity spectrum ob-
tained by Legendre transformingt(q) for 22<q<4, that is
displayed in Fig. 5. The single humped shape with a no
nique Hölder exponent obtained characterizes a multifrac

The Dq spectrum obtained fromt(q) can be seen in Fig
6. The support dimensionDo5Dmax52t(0)50.9760.15,
which implies that the capacity of the support is appro
mately 1; i.e., the support is not a fractal.Dq converges
asymptotically toD`50.4060.04 for qmax, and to D2`

51.3860.24 forqmin . The minimum valueD` corresponds
to the strongest singularity which characterizes the most r

FIG. 4. t(q) spectrum of a pollen time series.
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fied zone, whereas higher values exhibit weaker singulari
until D2` , i.e., the weakest singularity corresponds to t
densest zone.

The information dimension isD15 f „a(1)…5 f (0.68)
50.6860.08, which features the scaling behavior of the
formation. It plays an important role in the analysis of no
linear dynamic systems, especially in describing the loss
information as chaotic system evolves in time@22#. D1
50.6860.08 implies that we are in the presence of a chao
system. The correlation dimension isD250.5760.12, which
characterizes a chaotic attractor and is very close to the v
obtained previously with the Grassberger-Procaccia met
@5#.

VI. CONCLUSION

The wavelet transform modulus maxima method was
plied to study the multifractal characteristics of an airbor
pollen time series. Previous analyses of the dynamic cha

FIG. 5. f (a) spectrum of a pollen time series22<q<4.

FIG. 6. Dq spectrum of a pollen time series. The support dime
sion Do5D(q50);1. Dq converges asymptotically toD2`

50.4060.04 forqmax, and toD`51.3860.24 forqmin .
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teristics of atmospheric pollen time series indicate that
system can be described by a low dimensional chaotic m
The full complexity of the scaling structure of the stran
attractor associated with the airborne pollen dynamics
more conveniently reflected by the spectrum of generali
dimensionsDq . The information and the correlation dimen
sions correspond to a chaotic system showing a loss o
formation with time evolution. The characterization of th
-
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airborne pollen dynamics is important in order to impro
airborne pollen forecasting.
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@19# Hëinz-Otto Peitgen, H. Jurgens, and D. Saupe,Chaos and

Fractals, New Frontiers of Science~Springer-Verlag, New
York, 1992!.

@20# P. Goupillaud, A. Grossman, and J. Morlet, Geoexplorat
23, 85 ~1984!.

@21# A. Grossman and J. Morlet, SIAM~Soc. Ind. Appl. Math.! J.
Math. Anal.15, 723 ~1984!; and inMathematics and Physics
Lectures on Recent Results, edited by L. Streit~World Scien-
tific, Singapore, 1985!.
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